pipeline module
- class pipeline.Pipeline(train_dataset, valid_dataset=None, test_dataset=None, model=None, training_params=None, optimizer=None, model_class=None, evaluators=[])[source]
Bases:
object
Pipeline class to train and evaluate models. To optimize a model, provide an optimizer and model class. To train a model with fixed parameters, provide a model and training parameters.
- Parameters:
train_dataset (BaseDataset) – The training dataset.
valid_dataset (BaseDataset, optional) – The validation dataset. Default is None.
test_dataset (BaseDataset, optional) – The test dataset. Default is None.
model (Model, optional) – The model to train. Default is None. If optimizer and model_class are provided, this is not used.
training_params (Dict, optional) – The parameters for training the model. Default is None. If optimizer and model_class are provided, this is not used.
optimizer (OptunaOptimizer, optional) – The optimizer to use for optimization. Default is None.
model_class (Model, optional) – The model class to use for optimization. Default is None.
evaluators (List, optional) – The evaluators to use for evaluating the model. Default is [].
- Raises:
AssertionError – If neither model and training_params nor optimizer and model_class are provided.
- evaluate(dataset)[source]
Evaluate the model on a dataset.
- Parameters:
dataset (BaseDataset) – The dataset to evaluate the model on.
- Returns:
The metrics evaluated on the dataset.
- Return type:
metrics (Dict[str, float])
- property model: Model
Get the trained model.