Cetaceo

Contents

  • data package
  • evaluators package
  • models package
  • optimization package
  • pipeline module
  • plotting package
  • utils package

Examples

  • Examples
    • How to train an MLP using the Pipeline
    • How to optimize with optuna an MLP using the Pipeline
    • Train a PINN (Physics Informed Neural Network) with a custom PDE
    • Train a PINN (Physics Informed Neural Network) Shrodinger equation

Comparison RL vs PSO

  • Airfoil Optimization with PSO
  • Airfoil Optimization with RL
  • Airfoil Optimization with PSO preserving maximum thickness
  • Airfoil Optimization with RL preserving maximum thickness
Cetaceo
  • Examples
  • View page source

Examples

  • How to train an MLP using the Pipeline
    • Import classes and define paths
    • Define sklearn scalers if needed
    • Create datasets
    • Evaluators and Plotters
    • Model creation
    • Run the pipeline
  • How to optimize with optuna an MLP using the Pipeline
    • Import classes and define paths
    • Define sklearn scalers if needed
    • Create datasets
    • Evaluator
    • Optimization
    • Run the pipeline
  • Train a PINN (Physics Informed Neural Network) with a custom PDE
    • Define the collocation points
    • Define the PDE
    • Define the boundary conditions
    • Train the pinn
    • Make the predictions and plot the results
    • Save and load the model
  • Train a PINN (Physics Informed Neural Network) Shrodinger equation
    • Define BC points and Collocation points
    • Define PDE loss function
    • Define Boundary conditions
    • Create Dataset
    • PINN and NN definiton
    • PINN training with Adam optimizer
    • PINN training with LBFGS optimizer
    • Save model
Previous Next

© Copyright 2024, David Ramos, Pablo Yeste, Fermín Gutiérrez, Nicolás Becerra, Miguel Jaraiz, Ángel Ladrón.

Built with Sphinx using a theme provided by Read the Docs.