evaluators package
Submodules
evaluators.evaluator module
evaluators.regression_evaluator module
- class evaluators.regression_evaluator.RegressionEvaluator(tolerance=0.0001)[source]
Bases:
EvaluatorEvaluator class for regression tasks. Includes methods to calculate the mean squared error (MSE), mean absolute error (MAE), mean relative error (MRE), quantiles of the absolute errors, L2 error, and R-squared.
- Parameters:
tolerance (float) – Tolerance level to consider values close to zero for MRE calculation (default:
1e-4).
- R2(y_true, y_pred)[source]
Calculate the R-squared (coefficient of determination) for a set of true and predicted values.
- Parameters:
y_true (numpy.ndarray) – The true values.
y_pred (numpy.ndarray) – The predicted values.
- Returns:
The R-squared value.
- Return type:
float
- ae_q(y_pred, y_true, quantile)[source]
Calculate the quantile of the absolute errors between the true and predicted values.
- Parameters:
y_true (numpy.ndarray) – The true values.
y_pred (numpy.ndarray) – The predicted values.
quantile (int) – The quantile to calculate. Must be between 0 and 100.
- Returns:
The quantile of the absolute errors.
- Return type:
float
- l2_error(y_pred, y_true)[source]
Calculate the L2 error between the true and predicted values.
- Parameters:
y_true (numpy.ndarray) – The true values.
y_pred (numpy.ndarray) – The predicted values.
- Returns:
The L2 error.
- Return type:
float
- mean_absolute_error(y_true, y_pred)[source]
Compute the mean absolute error (MAE) between the true values and the predicted values.
- Parameters:
y_true (numpy.ndarray) – The true values.
y_pred (numpy.ndarray) – The predicted values.
- Returns:
The mean absolute error.
- Return type:
float
- mean_relative_error(y_pred, y_true)[source]
Compute the mean relative error (MRE) between the true values and the predicted values, excluding cases where y_true is close to zero within a specified tolerance.
- Parameters:
y_true (numpy.ndarray) – The true values.
y_pred (numpy.ndarray) – The predicted values.
tolerance (float) – Tolerance level to consider values close to zero. Default is 1e-4.
- Returns:
The mean relative error excluding cases where y_true is close to zero.
- Return type:
float
- mean_squared_error(y_true, y_pred)[source]
Compute the mean squared error (MSE) between the true values and the predicted values.
- Parameters:
y_true (numpy.ndarray) – The true values.
y_pred (numpy.ndarray) – The predicted values.
- Returns:
The mean squared error.
- Return type:
float
- property tolerance: float
evaluators.regression_evaluator_plotter module
- class evaluators.regression_evaluator_plotter.RegressionEvaluatorPlotter(plots_path, plots_name=None, tolerance=0.0001, plotters=[])[source]
Bases:
RegressionEvaluatorEvaluator class for regression tasks. Besides returning the evaluation metrics, it also create the plots of the `Plotter`s given.
- Parameters:
plots_path (str) – The path to save the plot.
plots_name (str) – The name of the plot (default:
None).tolerance (float) – Tolerance level to consider values close to zero for MRE calculation (default:
1e-4).plotters (list) – List of plotters to be used.