Source code for evaluators.regression_evaluator_plotter

from . import RegressionEvaluator
import numpy as np

[docs] class RegressionEvaluatorPlotter(RegressionEvaluator): r""" Evaluator class for regression tasks. Besides returning the evaluation metrics, it also create the plots of the `Plotter`s given. Args: plots_path (str): The path to save the plot. plots_name (str): The name of the plot (default: ``None``). tolerance (float): Tolerance level to consider values close to zero for MRE calculation (default: ``1e-4``). plotters (list): List of plotters to be used. """ def __init__( self, plots_path: str, plots_name: str = None, tolerance: float = 1e-4, plotters = [] ) -> None: super().__init__(tolerance) self.plotters = plotters self.plots_path = plots_path self.plots_name = plots_name def __call__(self, y_true: np.ndarray, y_pred: np.ndarray, x) -> dict: metrics = super().__call__(y_true, y_pred) if len(self.plotters) != 0: for plotter in self.plotters: plotter.plot(y_true, y_pred, self.plots_path, self.plots_name) return metrics